La capacidad de reparación del ADN es vital para la integridad de su genoma, y por tanto, de su funcionamiento normal y el del organismo. En el caso de muchos de los genes que se había demostrado que influían en la longevidad, más tarde se ha revelado que tienen un papel en la reparación y protección del ADN. La incapacidad de corregir lesiones moleculares en las células que forman gametos pueden introducir mutaciones en el genoma de sus descendientes, influyendo en el ritmo de la evolucion.
martes, 24 de abril de 2012
La reparación del ADN es un conjunto de procesos por los cuales una célula identifica y corrige daños hechos a las moléculas de ADN que codifican el genoma. En las células humanas, tanto las actividades metabólicas como los factores ambientales, como los rayos UV o la radiactividad, pueden causar daños al ADN, provocando hasta un millón de lesiones moleculares por célula por día. Muchas de estas lesiones causan daños estructurales a la molécula de ADN, y pueden alterar o eliminar la capacidad de la célula de transcribir el gen que codifica el ADN afectado. Otras lesiones producen mutaciones potencialmente nocivas en el genoma de la célula, lo que afecta la supervivencia de sus «células hijas» a la hora de la mitosis. Por consiguiente, el proceso de reparación del ADN es constantemente activo, respondiendo a daños a la estructura del ADN.
La capacidad de reparación del ADN es vital para la integridad de su genoma, y por tanto, de su funcionamiento normal y el del organismo. En el caso de muchos de los genes que se había demostrado que influían en la longevidad, más tarde se ha revelado que tienen un papel en la reparación y protección del ADN. La incapacidad de corregir lesiones moleculares en las células que forman gametos pueden introducir mutaciones en el genoma de sus descendientes, influyendo en el ritmo de la evolucion.
Reparación sobre la marcha, es el principal sistema de corrección de daños. Lo realizan las propias ADN Pol I y ADN Pol III (o sus equivalentes en eucariotas) con su actividad exonucleasa 3' → 5' para corregir un nucleótido equivocado que hayan colocado. Esta incorrección es detectada porque el emparejamiento incorrecto causa una distorsión de la doble hélice que las ADN Polimerasas pueden detectar. Sin embargo, la reparación solo puede realizarse si aún no se han puesto más nucleótidos, una vez colocado aunque sea uno más, éste actúa como barrera de no retorno.
Reparación directa, no requiere eliminación de nucleótidos o bases nitrogenadas, sino que se emplean enzimas para reparar directamente alteraciones nucleotídicas. Los principales enzimas empleados son la fotoliasa (separa los dímeros de timinas formados por radiación UV) y la metiltransferasa (retira grupos metilo añadidos al ADN).
Reparación por escisión de base (BER), que repara daños a un único nucleótido causados por oxidación, alquilación, hidrólisis o desaminación. Una glicosidasa escinde la base nitrogenada del nucleótido dañado, generando un sitio apurínico o apirimidínico. El esqueleto pentosa-fosfato residual es eliminado por una AP endonucleasa y finalmente es sustituido por el nucleótido adecuado por la actividad secuencial de ADN polimerasa y ADN ligasa
Reparación por escisión de nucleótido (NER), que repara daños que afecten cadenas más largas, de entre dos y treinta bases. Este proceso reconoce cambios grandes que distorsionan la hélice, como dímeros de timina, así como roturas de cadena única (reparados con enzimas como la UvrABC endonucleasa. Una forma especializada de NER, conocida como reparación acoplada a transcripción (TCR) desarrolla enzimas de alta prioridad en genes que se están transcribiendo activamente.
Reparación de malapareamiento o reparación por mismatch (MMR). Todas las reparaciones anteriores se realizan antes de terminar la replicación. Este sistema se realiza cuando la replicación ya ha concluido, y corrige errores de nucleótidos mal apareados (pero normales, es decir, no dañados). Para ello debe reconocer qué hebra es la correcta, lo que en procariotas ocurre porque el ADN suele tener metiladas sus bases, pero tras la replicación la hebra nueva no se metila hasta comprobar que no tenga errores, por lo que la maquinaria de reparación supone que si hay un error tras la replicación, se habrá producido en la hebra nueva (la no metilada). Una vez metiladas, o no hay corrección posible, o ésta puede causar errores. Por ejemplo, en cualquier emparejamiento erróneo de GT y CT, se retira preferentemente la timina, porque es probable que sea resultado de la desaminación de la citosina. Este sistema de reconocimiento por metilación solo funciona en procariotas, se ignora cuál es el mecanismo empleado en eucariotas para distinguir la hebra recién formada de la hebra madre.
La capacidad de reparación del ADN es vital para la integridad de su genoma, y por tanto, de su funcionamiento normal y el del organismo. En el caso de muchos de los genes que se había demostrado que influían en la longevidad, más tarde se ha revelado que tienen un papel en la reparación y protección del ADN. La incapacidad de corregir lesiones moleculares en las células que forman gametos pueden introducir mutaciones en el genoma de sus descendientes, influyendo en el ritmo de la evolucion.
Suscribirse a:
Enviar comentarios (Atom)
No hay comentarios:
Publicar un comentario